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PREFACE

This program was conducted by the Department of Mechanical and Industrial
Engineering, University of Illinois at Urbana-Champaign, Illinois 61801, under
Contract F08635-82-K-0321 with the Air Force Armament Laboratory, Eglin Air
Force Base, Florida 32542-5000. Mr. Mark Amend, DLYV, managed the program for
the Armament Laboratory. The program was conducted during the period from
September 1982 through March 1985.

This report is a companion document to AFATL-TR-85-12, entitled A Fully
Viscous Two-Dimensional Unsteady Flow Analysis Applied to Detonation
Transition in Porous Explosives, which describes the treatment of the
unsteady, two-phase, separated flow conservation equations in one space
dimension. This report extends the treatment to two space dimensions.
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SECTION I

INTRODUCTION

With recent developments in target hardening technology, damage to the

casings of impacting bombs prior to initiation of the explosive charge by the

fuse has been occurring with increasing frequency. The work done here 'as

motivated by the desire to be able to predict whether or not detonation will

occur in warheads whose casings have been fractured. The existence of a hole

in the casing which confines the explosive can be expected to have a

considerable effect on the formation of a detonation wave in the explosive.

The purpose of this work is to present a model which will determine the extent

of this effect.

An on-going effort has been present at the University of Illinois at

Urbana-Champaign for the past several years, under the direction of Professor

Herman Krier, to develop a model which accurately describes the fluid

mechanics that result from flame spreading through a fragmented (and thus

porous) high-energy solid propellant or explosive media. The thrust of this

effort has been to: (a) formulate the equations of motion governing the fluid

dynamics of a combusting propellant bed and, (b) develop a stable numerical

scheme using these equations that will predict the transition from

deflagration to detonation (DOT) in a confined propellant bed. Previous

studies (including those of Van Tassel and Krier [1, Krier and Gokhale [2],

Krier, Rajan, and Van Tassel [31, Dimitsein [4], Krier, Dimltsteir, and

Gokhale [51, Krier, Gokhale, and Hughes 161, Krier and Kezerle [71, and

Butler, Krier, and Lembeck 181) have laid a strong foundation towards the

achievement of the goal. Models were derived to treat the unsteady, two-

.. - -. ,
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phase, separated flow conservation equations in one space dimension and these

were incorporated into a computer code which yielded stable solutions for a

wide range of input parameters. In its present form, the existing code is

capable of showing the rapid building up of a pressure shock front from an

initially quiescent, but locally ignited bed of packed, granulated particles

and predicting the formation of a steady-state detonation wave, provided that

the motion of the gas and particle phases is in one space dimension only.

(This has been shown experimentally to be the case for flame spreading through

a granulated propellant or explosive material which is completely enclosed in

a solid container (Reference 9).) Table I is a list which compares the

detonation conditions predicted by this one-dimensional DDT code for various

values of the initial particle density and porosity with the results predicted

by a steady-state thermo-chemical code (Reference 10); it illustrates the

high degree of accuracy using these methods.

TABLE 1. COMPARISON OF DATA FROM 1-D CODE AND TIGER CODE
(oo AND oo ARE INPUT PARAMETERS)

po(g/cc) (o PCj(GPa) TCj(°K) ocj(g/cc)

DDT - Code 1.20 0.368 14.38 4201 1.64
TIGER 1.20 0.368 14.92 4337 1.65
DDT - Code 1.30 0.316 16.90 4289 1.76
TIGER 1.30 0.316 17.26 4304 1.78
DDT - Code 1.33 0.300 18.11 4406 1.80
TIGER 1.33 0.300 18.00 4300 1.81
DOT - Code 1.40 0.263 19.64 4393 1.87
TiGER 1.40 0.263 19.60 4280 1.89

2



In its current state, the model can predict DOT in fractur-d high

explosives contained within undamaged bomb casings, but does r,t contain the

necessary considerations for modeling the accelerated flame spreading in

realistic 2-D and 3-0 bomb casing configurations, since one of the assumptions

in its formulation was that the flow was strictly one dimensional. The

addition of cracks or holes in the container walls (partial confinement) would

cause the flow to become multi-dimensional. The work presented in this report

undertakes to develop a model of a combusting propellant bed which is not

always totally confined, that is, in which some of the gas generated by the

burning fragments is allowed to escape (along with, perhaps, some of the

entrained particles).

Two approaches to solving this problem are discussed: (a) modifying the

conse 'ation equations in the one-dimensional model to include loss terms

which simulate the mass, momentum, ana energy escaping through the holes in

the casing, and (b) developing a new, unsteady, three-dimensional flow model

with a new numerical scheme, which incorporates the hole in the casing as a

boundary condition to the flow.

Approach (a), which is discussed in detail in Section II, utilizes

pseudo-sink terms in the conservation equations which simulate the effects of

mass loss on the formation of a pressure wave in the burning particle bed.

The approach was taken as a first approximation of the effect of partial

confinement since the working one-dimensional model was already available.

Clearly, since the mass would be ejected out of the domain in a direction

transverse to the direction of the flame spreading, the problem becomes multi-

" dimensional. However, even though the quasi two-dimensional formulation will

not yield exact results, it can provide meaningful physical insight into the

3
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behavior of partially confined accelerating reactive flows. This phase of the

work has been successfully completed and published in a proceedings (Reference

11). The results are both reasonable and consistent.

Approach (b) is much more ambitious in its scope. It requires the two-

phase, unsteady, separated flow conser-vation equations to be expressed in

three space dimensions and a new stable numerical scheme to be developed which

can solve these very non-linear, coupled time-dependent equations. Once this

. has been done, the condition of partial confinement can then be added in by

simply using the appropriate boundary condition. However, the difficulty of

developing a stable numerical scheme to integrate these coupled, hyperbolic

partial differential conservation equations alone provides a formidable

task. When coupled to the large domain of the problem the task becomes even

more difficult. It is therefore apparent that this phase of the work cannot

be expected to have been seen through to its completion in the short year that

it has been underway. However, important strides have been made toward that

completion. Section II[ of this report presents the formulation of the

unsteady, three-dimensional, two-phase reactivd flow model, while the

numerical scheme is discussed in Section IV. Results currently available are

presented in Section V.

4
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SECTION II

THE PSEUDO TWO-DIMENSIONAL FORMULATION

1. INTRODUCTION

Impact forces imparted from hardened concrete targets to aerial bombs

can, in some cases. cause outer case failure and breakup of the high explosive

filler. The detonation wave which may be expected to form if the bomb casing

were undamaged (total confinement of the explosive media) may be reduced or

even quenched completely in the presence of the 1amaged casing (partial

confinement). In this chapter the effect of partial confinement is

investigated by adding quasi two-dimensional sink terms to the equations of

mass, momentum, and energy that describe the accelerating flame spreading

through a granular high explosive. These sink terms are formulated by

assuming that the gas escapes from the hole at the choked velocity for the

local pressure conditions at the hole location. It is clear from the results

presented that such partial confinement can indeed have a significant effect

on the formation of a detonation wave.

2. Assumptions

The important assumptions in formulating this psuedo one-dimensional

model are listed below.

a. The analysis considered here explicitly assumes that at time t = 0,

the warhead has already impacted with the surface, and the explosive filler

has already fragmented, causing damage to the casing (see Figure 1). It is

also assumed that at t = O ignition of a small region of the explosive by the

fuse had already occurred.

5



b. The deflagration and possible transition to detonation occurs only

in one direction (x-space).

c. The surface-to-volume ratio of the fragmented particles is

sufficiently high that they may be treated as uniform pseudo-spheres,

typically of the millimeter or sub-millimeter diameter.

d. The unsteady two-phase, separated flow analysis previously developed

in Reference 8 represents the basis upon which this model was built.

e. The possibility of mass, momentum, and ?nergy loss is treated by

psuedo-aide venting from cracks of prescribed width, length, and location.

f. The decision on whether the fragmented bed of explosive will

detonate is based on the transient reacting flow events occurrlrtg in the first

10 to 20 cm of length. A run-up length of greater than 20 cm requires times

well beyond established experimental DOT events.

g. The explosive particles, when ignited, burn at a rate i aPn where

a and n are assumed to be known constants for typical high explosives used in

warheads. Ignition is assumed to have occurred when a prescribed critical

temperature is reached by the particles (see Reference 8).

h. The porosity (gas volume/total volume) of the fragmented bed is

assumed initially to be uniform, and typically in the range of 0.2 to 0.3.

6
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i. The product gases obey a non-ideal equation of state (see Reference

7).

j. Heat transfer from the gas to the solid is Sy rapid convection only;

conduction and radiation are ignored.

k. The gas is assumed to be inviscid. The drag between the gas and

particle phase is included as a source/sink term in the momentum and energy

equations. (This is equivalent to assuming that the gas-gas momentum viscous

losses are orders of magnitude less than the gas-particle viscous

interaction.)

1. The equations are expressed as averaged-laminar flow properties in

that the turbulence due to the two-phase nature of the problem has been

averaged out.

3. THE FLUID MECHANICS MODEL

In the analysis of two-phase reactive flow, one must describe the

conservation of mass, momentum, and energy througrpout the domain for both the

solid particle phase and the gaseous products phase. In separated flow

analysis, each phase is assuned to be a continuum, and the important

quantities of mass, momentum, and energy are therefore conserved separately in

each phase. The governing differential equations are presented below,

including the modifications made in this iiork to account for the lAsses

occurring through the hole in the casing. For a detailed derivation of the

basic equations, the reader is referre4 to Reference 7.
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GAS PHASE CONTINUITY

T + (1)

SOLID PHASE CONTINUITY
302 3( O2vp ~-t' =" rx (2)

ax p

GAS PHASE 'OENTUM U2

at ax ax -D , Up - gUg (3)

SOLID PHASE MOMENTUM 2)(p u )  3 (o u ) a(Pp[1-s])
p..~ 2 2 + 0 rut a U (4)

at ax ax p p 4

GAS PHASE ENERGY
3(0iEqt) a(oEgtu + su P )

_t gg q -Qat ax - U p

2

+ P(Echem + - 8gEgt (5)

SOLID PHASE ENERGY
____t)_ - a(o.Eptup + (1-,) U P) D

at ptpax p , D

2u

+ r(EPchem - ) - spEpt (6)

In the energy equation,

Egt C VgT + 0.5 U 2

vgg g



and EPt CvpTp + 0.5 U 2

The subscripts g and p denote the gas and particle phase respectively. The

quantities p, and 02 in equations (1) - (6) refer to the bulk densities for

each phase and are defined as

0202 =op(l-4)

The porosity o is defined as the ratio of instantaneous gas volume to the

mixture volume. Hence, the solids fraction is 1-0. The sg and B terms in

Equations (1) - (6) are the sink terms which account for the losses through

the cracked casing. They are derived in detail in the next section.

In addition to the six conservation equations, several constitutive

relations are necessary for closure. The relations used in this work are

presented in detail in Appendix A, along with some discussion on their

validity under the extreme conditions imposed by this problem. The necessary

equations are:

(A-i) An equation of state for the gaseous products phase, Pg Pg(0g, Eg).

(A-2) An equation of state for the solid particle phase, pp = op(P

(A-3) A relation for predicting the instantaneous porosity, C.

(A-4) A relation for the interphase heat transfer, Q

(A-5) A gas particle interphase drag relation, 0.

(A-6) An equation determining the gas generation by the burning particles, r.

(A-7) An ignition criteria.

9



4. DERIVATION OF THE MASS LOSS TERM

The condition of partial confinement requires that extra terms be added

to the conservation equations in Reference 7. Figure 2 shows the fragmented

bed being modeled. The fourth volume cell from the left shows the crack in

the casing, exposing the granulated propellant inside. Superiasposed on the

front face of the illustration are the pressure versus distance profiles

showing the expected pressure drop at the hole.

Consider now the single control volume with a hole in it shown in Figure

3. Pressure gradients oue to combustion are causing gas flow in the x-

direction, as well as causing some of the mass to flow out of the hole. The

rate of mass flow of the gas out of the hole, per unit volume, is given by:

Bg (7)g Vcv

• =ogUAh (8)

where og = gas density

U = velocity of gas leaving the control volume

Ah = area of the hole

Due to the high gas pressures present in the bed, we can assume that the

flow of the gas out of the hole into the atmosphere will always be choked.

Hence, U will always be the local speed of sound:

U [ 4) u s  (9)

10



A detailed derivation of the speed of sound equation for the non-ideal gas

used in this model can he found in Appendix B.

The area of the hole is defined as:

Ah = Ax'AxO (10)

Note that o is included in the definition of Ah since, in the separated flow

analysis, only the area of the hole occupied by the gas is considered.

The volume of the control cell is given by Vcv Ax3. Substituting back

into the expression for Bg, one obtains

Mn U 65X ftX14 io IU; B~g = V = sX3X'= AxS ("Ax,)x 1" (

- cv ax A)

8g = CO  (12)

where C. is a prescribed constant which defines the width of the crack.

If one were to consider entrainment of some of the particles of unburned

solid propellant in the gas which is escaping out of the hole, the mass loss

for the solid phase may be written as:

2U A
,.Op 3

i-2- Ax

!:=co (13)
p AX 0

where 00 is a prescribed drag factor between the entrained particles and the

escaping gas, 0 < 0 < 1.01

,- - - - - - - - .- . .



The momentum losses through the hole then become sg U and spUp for the

gas and particle phase. respectively. Note that the velocity in the A-

direction is used in these terms rather than the sound speed. This is done

* because of the one-dimensional formulation of the equations of motion. The

quantity of interest is the amount of momentum in the x-direction which the

ejected mass removes from the domain.

Likewise, the sink terms in the energy equations are agEgt and for

the gas and particle phase, respectively. Note that the work term found in

the flux terms of Equations (5) and (6) are not included in the mass loss term

because there is no work done in the x-direction in removing the mass from the

domain.

5. NUMERICAL SOLUTION OF THE CONSERVATION EQUATIONS

The highly non-linear partial differential equations (1) - (6) do not

admit any analytical solutions. In order to obtain solutions, the time-

dependent equations were discretized over the domain and solved numerically

via the method of lines. In this approach, the flux terms on the right-hand

side of Equations (I) - (6) are evaluated as centered finite differences,

along with any source/sink terms. The remaining differential equations are

then treated as ordinary differential equations and solved via an O.D.E.

solver. For example, Equation (1):

-t =  x + I -Bg 
(14)

would be solved by first evaluating the terms on the right-hand side of the

equation at the current time level to get, say, G(t). This result is then put

back into Equation (1) to give:

72
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= G(t) (15)

This is an ordinary differential equation with p, as the dependent variable

and t as the only independent variable. Now an O.D.E. solver such as Runge-

Kutta may be employed to predict the new value of pl. In this work a variable

time step Runge-Kutta-Fehlberg fourth-fifth order algorithm was used. (For

more information on the method of lines, the reader is referred to Reference
~12.)

6. COMPUTED RESULTS

The model described in the previous sections is first applied to a

baseline case, one in which there is no hole in the confining wall (total

confinement, Co = 0.0). The results for this case are then compared with the

output for cases where holes of various length, width, and location have been

introduced into the wall. The important input parameters for these cases are

listed in Table 2. The output presented here is primarily in the form of

pressure profiles and plots of the locus of the flame front. These profiles

are presented in preference to others because pressure and flame front

velocity are the two most critical parameters in determining whether or not a

detonation will occur.

Figure 4 shows the pressure versus distance profiles for various times

for the baselinT (no hole) case. The plot shows the shock building and

advancing through the bed as time progresses. At x = 9.0 cm the peak pressure

is almost 14.0 GPa, which is just a little less than the Chapman-Jouget (CJ)

detonation pressure for an explosive with this bulk density (see Reference 8).

13

.-..- - - " - .- - -,- ,-. . . . . - - . . ". . . - .. - - -



TABLE 2. INPUT PARAMETERS FOR 1-0 MODEL

Bed Length, L 10 cm
Particle Radius, rpo 200 pm
Porosity, *s 0.3
Pressure, P 1 X 10B GPa
Gas Temperature, T 300 °K
Particle TemperatuR , T 300 OK
Ignition Temperature T- 306 OK
Chemical Energy of Solig"E 5.74 MJ/kg
Gas Constant, R' 296.8 J/kg OK
Prandtl Number of Gas, Pr 0.70
Constant Volume Specific Heat, Cv  1500 J/kg_'K
Interphase Viscosity, u 1.80 x0 -  Ns/m2

Burning Rate Index, n 1.0
Coefficient in Burning Rate, a 0.001
Co-efficient in Equation of State, bI  4.0
Node Size, Ax 1 mm

Figure 5 shows the effect of having placed a hole 4 mm in length with an

opening ratio (Co) of 0.5 at a distance of 2.5 cm from the initiated end of

the bed. The location of the hole on the plot is evident from the severe

indentation in the pressure profile. It is interesting to comparg the profile

at t = 68 Psec for Figures 4 and 5. As one can see, the presence of the hole

has reduced the peak pressure by almost 6 GPa, while retarding the advance of

the flame front by 2 cm. Indeed, even at t = 72 psec, the peak pressure is

still about 3 GPa less than the baseline case at t = 68 wsec.

Figures 6 and 7 compare the effect of varying the width (Co) of the crack

while keeping the length constant at 4 mm. Figure 6 shows the pressure

profiles at x = 5.0 cm for various values of Co . It is apparent that as C

increases, the profiles converge. Figure 7 shows the effect of the various

C0 s on the flame front velocity. As can be seen from the plots, the flame

14
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front achieves a constant velocity near the end of the burn. This final

Chapman-Jouget velocity is one of the critical parameters in determining

detonation. As one can see from the plots, the final velocity decreases as C0

increases. We also see that the flame profiles again converge for large

values of Co.

Figures 8 and 9 show the effect of varying the length of the crack while

keeping C0 constant at a value of 0.1. Figure 8 shows the pressure versus

distance profiles at t = 58 usec for cracks ranging from 4 mm to 16 mm in

length. As one can see, varying the length of the crack has a more severe

effect on the profile than varying CO. For the case where W n 0.16 (16 mm

crack), the peak pressure in the bed is a mere fraction of the value obtained

for the totally confined case. Moreover, Figure 9 shows that the final flame

front velocity has been reduced from 5.2 mm/psec to only 2.7 mm/psec.

While results such as Figure 5 shows that partial confinement does indeed

have a significant effect on the forming detonation wave, one is still

concerned whether, after encountering a hole in the confining wall, the

reaction wave could possibly" recover and still form a detonation wave if there

were a sufficient length of confined bed downstream of the hole. Therefore, a

condition was simulated for a bed of 20 cm length with no hole in the

casing. This result was then compared to another 20 cm long bed in which a

hole with W = 0.02 (2 mm in length) and a Co = 0.20 had been introduced into

the casing. Figure 10 shows the pressure versus distance profile for the

partially confined bed. Also shown is the maximum pressure achieved by the

totally confined bed. As one can see, even though the process in the

partially confined case required 10 usecs longer, the peak pressure in the

damaged case has almost completely recovered the depressurization suffered due

15



to the hole. Figure 11 further confirms this recovery by showing that the

final velocities of the two flame fronts are almost equal for the two cases.

This result was somewhat unexpected. It was at first believed that the

presence of such a hole would permanently quench a detonation. Of course, a

crack of much longer width would likely prevent a detonation altogether.

Finally, a case was run in which the conditions for the crack formation

were changed. Instead of assuming that the crack already existed at

prescribed locations at t - 0, it was assumed that the impact with the

hardened surface had instead weakened the casing so that if the pressure

inside the bed exceeded a prescribed critical pressure, the casing would

crack. The model was set up so that when the pressure at any point in the bed

exceeded 5 kbar (72,500 psia) a crack with C0 = 0.1 and W = 0.01 would form at

that location.

Figure 12 shows the pressure versus distance profile for this case. As

can clearly be seen the pressure in the damaged explosive never exceeds the

prescribed critical pressure. Therefore it would be impossible for a

detonation to occur if such physics as modeled were actually valid. Figure 13

shows the flame front locus for the totally confined case and for two cases

where the casing fails at a prescribed pressure -- one at P = 0.5 GPa and one

at P = 1.0 GPa. One can see the severe reduction in the final flame velocity

caused by the erupting cracks.

7. CONCLUSIONS AND REMARKS

The results presented in the previous section verify the fact that

incomplete confinement of the explosive media does have a strong affect on the

16



formation of a steady-state detonation wave in a fragmented explosive. The

presence of a hole can bring about a very significant reduction in the gas

pressure as well as cause a severe reduction in the reaction front velocity.

The results also showed that if a sufficient length of confined bed remained

downstream of the hole, a detonation wave could recover and still reach

steady-state detonation.

The procedure outlined in this section, while providing results which are

heuristically reasonable, does make some major simplifying assumptions in

order to allow us to use the existing, proven one-dimensional flame spreading

model. Perhaps the greatest weakness of this model is that it does not

simulate the actual two and/or three dimensional processes of the gas and

particles flowing out of the hole. Since the one-dimensional model allows

only flow in the direction of the deflagration front, It is impossible to

model the turning of the gas as it gains y and z velocity components.

Furthermore, the one-dimensional model does not allow us to take the geometry

of the bomb or the cracks into account.

Therefore, we thought it necessary to formulate an unsteady flaefle

spreading model in three space dimensions to allow us to simulate this problem

with greater accuracy. In such a three-dimensional model, the hole in the

confining wall would simply become a boundary condition which allows the

normal velocity component at the wall to be nonzero. (Rather than the usual

boundary condition which states that the normal velocity component at the wall

must be zero.)

17
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Pressure vs. Time for Various Hole Sizes
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Pressure History for Ruptured
Bed Showing Recovery Downstream of Hole
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SECTION III

THE THREE DIMENSIONAL MODEL

1. INTRODUCTION

In References 1-8, the separated flow approach was used to derive the

conservation equations for an unsteady, two-phase reactive system in one space

dimension. In this section, the same type of analysis is followed to derive

the conservation equations for a three-dimensional domain in order to properly

model the dynamic flow processes in partially contained regions. Each phase

will be considered as a separate fluid flowing through its own control volume,

the sum of the two volumes being equal to the average mixture volume. The

conservation equations are then expressed in cylindrical coordinates with

interphase mass, momenturn ar.d energy tiansfer terms being included in all

three independent directions.

Before work was started on this phase of the project, a thorough search

of the fluid-mechanics literature was made. While the search was quite

exhaustive, very little work on transient flows was found which could be of

help to the analysis of this problem. However, a paper by Markatos and

Kirkcaldy (Reference 13), was found in which a numerical model based on a

separated flow analysis was used to investigate the transient, three-

dimensional reactive flow through the totally confined granulated solid

propellant inside a gun cartridge. While this paper did not present

sufficient details, it did provide a useful example which allowed us to

compare the unsteady, three-dimensional conservation equations derived in this

work with those derived independently by other authors.
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2. ASSUMPTIONS

All of the assumptions stated in Section II, paragraph 2, also apply for

the three-dimensional case, with the obvious exceptions of assumptions (b) and

(e), which refer to the one-dimensional nature of the equations. It will

still be assumed that the gas escaping from the domain through the crack in

the wall will leave at.the choked velocity. However, the pseudo one-

dimensional sink term (s) used to approximate the lost mass, momentum, and

energy will not apply here. Instead the choked assumption will comprise the

boundary condition at the location of the crack, and the amount of mass,

momentum, and energy lost will be found directly from the solution of the

conservation equations.

3. THE UNSTEADY, THREE-DIMENSIONAL CONSERVATION EQUATIONS

The unsteady conservation equations are presented below in their complete

form. A detailed derivation of these equations, based on the separated flow

concept is presented in Appendix C. The gas and particle phase momentum

equations in the r , 0 and * - direction are presented in generic form for

brevity, with Table 3 giving the specific terms for each phase and direction.

The conservation equations are:

Gas Phase Continuity

1p a 1a-
- - -B (rpu ) (O ) - (P ) + r (16)at - r ar 1 g r ae aVg - 9W

Solid Phase Continuity

3Z
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2 ((17)
ap r r 2Uep r a 2 p z p

Gas Phase Momenta (3-equations)

r(o__) a ( 1 U0 ) ) ( ) _

at r rr (rag 1  - az i9~~ ~ ~~~

Solid Phase Momenta (3--equations)

3(02 2) I (ro2U, ) Od (0V $2) ( 2 Z2

at r r r - ( (o Wp,2) + S

where 01 stands for Ug, Vg9 or w., respectively and 02 stands for up, Vp, or

w . The terms S0 and 5 rearesent the gas and solid phase source terms,

respectively.
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TABLE 3. SOURCE TERMS FOR MOMEMTUM EQUATIONS
iS

2

uL _ -0+ ru (18)
ug r r r p ()

- i P~ ~ +

r r @ 8 p (19)

Wg --- 0 + rw (20)::.Wg z Dz + rp

02 S02

2 - r1.2 pVp aP 2

p r ar r p (21)

"- Vp 2p Up I p P2
- + O -rv (22)

p r ae e p

azI :w p - + DOz -w rp (23)

In Equations (18)-(20)

2:-P 1  Pg0

and in Equations (21)-(23)

P2 = Pp (1-0)
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Gas Phase Energy

a(piEt) 1
'at ..r a(roiugEgt+ rougPg)-at 'r g ar

-( v E + VgPg) - 2(wE + ,w P
r ae Ig gt g g 3z ('ggt g

-OU - p v - OzW - Q

+ r(Eghem + U/2 + v12 + w /2) (24)

Solid Phase Energy

a(P2 E t) i a (rpuE + r(-,)u P

at r ar r ppt p p

-Wra (PVpEpt + (1-,)vpPp)

a (WEp + (1-4)WP) + O u
Z ppt pp r p

+ DV + 0 w + Q+r(EPh e- u/2- V/2- w/2)
aep zp Chemi p p p

(25)

In order to completely describe our system at every instant of time, we

need to know the instantaneous values of Pg, pp, Ugg UpI Vg, VP, Wg, Wp, Tg,

Tp5 P91 PP. dnd o - - - thirteen variables. Equations (16)-(25) allow us to

solve for ten of these variables. We therefore need three additional

relations to achieve closure. These equations are:
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(i) an equation of State for the gas phase

(ii) an equation of state for the solid phase

(iii) a material stress-porosity relation

The same relations used in the analysis described in Section II (and

further described in Appendix A) will'be used here as well. Furthermore, the

same relations for the gas mass generation r and the heat transfer rate Q, as

used in Section II will be used here. The definition of the drag viscous

interaction will be assumed to hold true in each direction independently,

i.e.,

4 u-u f (26)
0r 2 (9- p) P(27

4r g ~ p

P

S4r 2  9V- Vp)f P927

p

Z 4r2  (w w) f (28)z 2r W- P

P

2 2 2
D D ~+ D + D(

total= t  r 9 z (29)

In comparing Equations (16)-(25) to the one-dimensional conservation

equations (Equations (l)-(6) in Section I), one can see that the main

differences (other than the obvious additional terms that account for the
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multi-dimensional nature of the new equations) are the addition of the
'I~qterm in the r-direction momentum equations and the 1ugvg term in the

r r

o-direction momentum equations. These terms are the radial acceleration and

the Coriolis acceleration terms, respectively, and come from the fact that

aI s 0 and * 0 in a curvilinear coordinate system. [Here, F is the unit

vector in the radial direction and 0 is the unit vector in the azimuthal

direction.]

Also on the inspection of Equations (18)-(23) we note that the pressure

gradient terms are now written as the gradient of partial pressure (i.e.

) rather than the gradient of pressure (i.e. o4 ), as is sometimes
ar 2?

found in the literature (Reference 13). The specific form of this term has

been a subject of debate among fluid dynamicists working in multi-phase

flows. We feel that the correct form should be a-P€) since the term
ar '

represents the pressure force acting on the control volume faces. Since we

are considering each phase separately, we should include only the pressure

acting on that area of the control volume face which is occupied by the gas

phase. Hence, the porosity o (gas volume/total volume) must be included

inside the derivative. Naturally, the same reasoning holds true for the solid

phase. Therefore, the term (1-0) must be included inside the derivative of

the solid phase pressure gradient term.

4. DOMAIN

The first approximation to the actual geometry of current warhead

containers would be to model the bomb as a right circular cylinder, as is

shown in Figure 14. The figure shows the assumed crack in the outer casing as

well as the fragmented explosive inside. To be able to model realistic crack
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configurations one would have to include the entire 360 ° cross section of the

cylinder in the domain of the model. However, one of the difficulties in

tackling this problem is the large amount of computer time and memory which

would be required to simulate such cracking. Therefore, in an effort to

reduce the size of the domain, it was decided to assume a certain amount of

symmetry in setting up this problem. This can be done by assuming that the

damage to the casing occurs in such a manner that holes form in a symmetric

ring around the casing, as is shown in Figure 15. This subdivides the domain

of the cylindrical bomb into symmetric wedges, the flow in each wedge being

identical to the flow in all the other wedges. The flow inside the bomb may

then be completely described by solving the flow inside a single wedge.

Although such a domain limits the realism of this problem from a geometry

standpoint, this assumption still retains the necessary multi-dimensional

features of the transient fluid analysis. Also, it is not currently within

the scope of this work to analyze the dynamics of the casing fracture, but

rather to develop a model of the transient, two-phase reactive fluid mechanics

involved in the processes of detonation transition or failure. Clearly the

model developed herein, under this specific symetry assumption, can be

extended by simply adjusting the boundary conditions in the -direction to

include the full domain, once a super-computer with sufficient speed is

available.

5. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

Once the domain of the model has been fixed, boundary conditions must be

properly specified. The symmetric domain shown in Figure 15 has six

boundaries: solid walls at r = R, z = 0, and z L, and symmetry boundaries
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at r 0, e : I and e : 02. Obviously, at each solid wall the normal

velocity component must be zero. In addition, symmetry allows us to say that

the radial velocity components Ug and up must be zero at r = 0, and all

derivatives with respect to r must also be zero here. Symmetry also implies

that v g and Vp must be zero at e and 02 and that all derivatives with respect

to a must be zero at these two boundaries.

As mentioned in the introduction to this chapter, the velocity at the

location of the crack will be assumed to be choked. This assumption forms the

last boundary condition needed to solve the finite difference equations. How

these boundary conditions are incorporated into the finite difference model is

discussed in detail in Section IV, paragraph 4.

The bed of explosive particles is assumed to be initially quiescent and

at a prescribed nominal temperature and pressure. Combustion is initiated at

time t = 0 by assuming that a hot burning zone exists at one end of the

domain, with the temperature in this zone enough above the explosive ignitior

temperature to ignite the particles. The initial value input is given in

Section V.
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SECTION IV

THE FINITE DIFFERENCE EQUATIONS

1. INTRODUCTION

The unsteady two-phase conservation equations presented in Section III

form a set of coupled, non-linear, hyperbilic partial differential

equations. As was the case in the pseudo two-dimensional formulation

presented in Section II, these equations also will not have analytical

solutions. Futhermore, a Method of Lines (MOL) approach such as the one used

in solving the one-dimensional equations would not be feasible for the three-

dimensional case due to the great increase in the size of the domain. The

high-order ODE solvers used in the MeLhod of Lines require a large number of

calculations to be performed when solving the unsteady terms in the

conservation equations. Therefore, while such an approach may be feasible for

the domain of the one-dimensional case, it would prove to be cost prohibitive

for the much larger three-dimensional domain. Instead, a new integration

method was developed as part of this research.

In this section, we will detail the development of a new numerical scheme

which will be used to integrate Equations (16)-(25). The discretization of

the domain into a mesh of grid points is discussed in paragraph 2, while the

r* actual finite difference scheme is discussed in paragraph 3. Paragraph 4

details the finite differencing of the boundary conditions. Finally,

stability considerations for the finite difference scheme are discussed in

paragraph 5.
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2. THE FINITE DIFFERENCE GRID

In applying a finite difference method to the solution of any system of

equations, the continuous domain of the problem must be replaced by a mesh of

grid nodes, each node representing a location where the values of certain

dependent variables are stored. In this analysis, a staggered grid was used

to represent the domain. Figure 16 shows a single cylindrical, three-

dimensional control volume element employing the staggered grid. All scalar

variables are stored in the node at the center of the control volume, while

the bulk momentums in the ' -direction ( olU and P2Up) are stored at each of

the nodes in the r -faces of the control volume, the bulk momentum in the - -

direction ( p1vg and P2Vp) are stored at each of the nodes in the 9 -faces,

and the bulk momentums in the I -direction ( oWg and 02Wp) are stored at

each of the nodes in the _ -faces.

There are several reasons why it is advantageous to use the staggered

grid instead of the conventional grid. First, as will be shown in paragraph

4, it makes the finite differencing of the boundary conditions considerably

easier. It also enables one to get second-order accurate centered space

differences while having to span only half the distance required for taking

such a difference on a conventional grid. The advantage of this can be

illustrated by the following one-dimensional example. Consider the two grids

shown in the Figure 17. The upper grid is a conventional grid, while the

staggered grid is shown below that.
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Now assume one wishes to evaluate the pressure gradient term in the

momentum equation. On the conventional grid, this term is evaluated by second

order centered difference as:

aP-P ( - Pi-)/2Ax-~x = i+l -

If we apply this equation at node i=2, we get for our example,

aP-- (100-100)/2ax = 0

This obviously cannot be true given the pressure field depicted in the figure.

If we now evaluate this finite difference on the staggered grid, we only

need to take the difference over a total step of Ax (rather than 2ax as

before), since values of P are available at nodes that are a distance of

Ax/2 and - Ax!2 from the velocity node (where the momentum equation will be

evaluated). Thus at iu2,

ap
-E -(P P  )/8x
ax i+ i-

aP
or - (100-50)/Ax = 50/Axax

- As one can see, the scheme using the staggered grid yields a much more

accurate result for this typical example.
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Figure 18 shows the r, o -plane and r, z-plane projections of our wedge-

shaped domain with the staggered grid superimposed over it. The continuity

equation (Equations (16) and (17)), which are used to solve for p, and 02

and the energy equations (Equations (24) and (25)), which are used to solve

for Egt and Ept, will be solved at the scalar nodes (denoted by the symbol +

in Figure 18) since these are scalar quantities. The ' -momentum equations

(Equations (18) and (19)) will be solved at the ir -momentum nodes (denoted by

the symbol ), the 4 -momentum equations (Equations (20) and (21)) will be

solved at the g -momentum nodes (denoted by the symbol ), and the z -

momentum equations (Equations (22) and (23)) will be solved at the I -momentum

nodes (denoted by the symbol ).

When employing the staggered grid, the situation may arise where the

value of a variable is needed at a location where it is not defined. In this

case a simple average will be taken to find the value at the desired point.

For example, suppose one needs to know the value of the velocity, u, at the

scalar node i=1 shown in the one-dimensional depiction (Figure 19).

Since the u values are not stored at i=1, we must average the values stored at

-i= and i=I , together, to form ui 1. Thus

ui = (i+ + U 1 )/2

Although the necessity for such averaging may complicate the numerical

scheme somewhat, it is actually advantageous as far as the accuracy of the

calculations is concerned. The averaged value is influenced by the value of

the variable at two nodes, while the variable which is read directly from a

location where its value is known is influenced only by a single value. In
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other words, the averaging operation passes information about gradients as

well as providing the value needed.

Finally, one will note that in our scheme, momentum rather than velocity

is stored at the nodes located in the control volume faces. This was done

mainly to reduce the amount of computer storage required for the code.

3. THE FINITE DIFFERENCE EQUATIONS

Once the domain has been discretized, we must next cast the continuous

conservation equations (16)-(25) into finite difference form. We will

basically be using the leapfrog scheme Reference 14, which means that the

unsteady term will be evaluated at time levels t + At and t - At , while the

flux and source/sink terms on the right hand sides of equations (16)-(25) will

be evaluated at the current time, t.

The leapfrog scheme was chosen after we reviewed a paper by Williams

(Reference 15) in which he successfully used the leapfrog scheme to integrate

the unsteady three-dimensional conservation equations for an incompressible,

single-phase viscous fluid. The similarity between the equations integrated

in Williams paper and the equations handled in this work prompted us to

consider a leapfrog-type -cheme. While the compressible, two-phase reactive

nature of the flow dealt with in this paper resulted in some major differences

between the numerical scheme developed by Williams and the scheme developed

herein, the usefulness of the work done in Reference 15 in aiding us in our

analysis is still acknowledged.

Consider the following shorthand notation (where x is a generalized

independent variable and q is a generalized dependent variable):
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[xq = (q (x+Ax/2) - q (x-Ax/2)I/Ax (30)

X = [q (X+Ax/2) + q (X-AxI2)]/2 (31)

Equation (30) is a difference operator while Equation (31) defines an

averaging operator. Furthermore, let us define

.mr Ug - gas bulk momentum in the r-direction

Sr 2 u Up - particle bulk momentum in the r-direction

m" gv 9- gas bulk momentum in the ,-direction

m6 2 v- particle bulk momentum in the s-direction
02

mz 0Wg - gas bulk momentum in the i-direction

m Z2= Pw p- particle bulk momentum in the i-direction

We can then write Equations (16)-(25) based on our staggered grid in

finite difference form as:

Gas Continuity (applied at scalar nodes)

1 1

= _ (m - 6e(mn - +z(m 6 ) + r (32)
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Particle Continuity (applied at scalar nodes)

"t 1 16t =- -6 r)( ) - 6z( ) - r (33)
t 2 r 6 62 zZ

Gas r -Direction Momentum (applied at -momentum nodes)

6t I rm 1 /-0/- [- 6e [(me (mt ri r r r 1  r e r, 6,

- - r 2 -r
- 6 ZI' r,(m zi /PI) + (mre ) /(plr)

-r

- z~mr (mz - (mr~mr)/()

= -r

+ r m /P2 (34)

Particle r~ -Direction Momentum (applied at r -momentum nodes)

rr

- r P) DC, r ~ mr) ]

%;:6, = 1F)/0 2  1 6[mr (me2/

6 -zIm r2 (mZ2 /P2)),; + (mr 2); r )

!-6 -r(P) + D (mr Zr - mrz

r 2) r , 2/2

-'r- mr1P2 (35)

Gas -Direction Momentum (applied at -momentum node)
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.

2

-rr - -

/ -0 (Mr /'r)

--r6o(PI) - D (m0 / 3 1 m6 /2)

+ r m6 2 2 (36)

Particle g -Direction Momentum (applied at i -momentum nodes)

,6,t =/2 1 6r[r--0 (m/ /-] ' s( /PI
o2 r r r 2  

r2

1 -0

- (P2) + 0 (me/j -

--m /P2 (37)
2

Gas I -Direction Momentum (applied at 2 -momentum nodes)

tit = &1 [r - 1 (me

tz1  r r zr 1 / - F 0 m ( /o-)j
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-2(j )/] (P)-

-ZS (mz, /0 -mz/P2) + Z2/0 (38)

Particle 2 -Direction Momentum (applied at ' -momentum nodes)

r - rZ I - -

r- r 2-1

Z I (Z[ 2 )2/P21 - Sz(p2)

.- -z--0(m2 / - ) - ?zmz / (39)- O /0Z _ mz /2 ) z
1 2 2

Gas Energy (applied at scalar nodes)

dti - 6 r frmrnE8 [tr (P,17I) 1

- 6 m [E/ -/p + (PT/h3zl}

z z

- Q- 0 r/ 2 -. 2mr 2 / P 2 / 02

- 0 jZ /P2 + r LE m + ( /2)2/2z 2 rhm2

+ (m /P2 ) 12 + (mz /2) /2] (40)
2 2
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Particle Energy (applied at scalar nodes)

6tE 2  6 _2/0rrm 2  /P2-- )rj
r r {rml [E/rr (,)J

r 6{rn

Zm 2 [E2 /2 + (P 2/)zlJ

+ Q + D n1 2 + r me2
r2 2

+ D-miz /p, + r [EPe - (mri/p2)
2/2

- (m8 /P 2 ) /2 - z /2 (41)

In these equations,

(U9/4r p) fpg

4. THE BOUNDARY CONDITIONS

Once the domain has been discretized and an integration scheme has been

devised, we must next turn to implementing the boundary conditions. As

mentioned earlier, there are six different boundaries where tne equations must

be satisfied. We will consider each boundary separately.
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( r) r=R

Here we have a solid wall, which means that the normal velocity

components (U9 and up) must be zero. Figure 18 shows that at this boundary,

we have only F -momentum nodes. Since only the r -momentum equations are

evaluated at these nodes, this boundary condition can easily be met by

initializing the value of the r -momentum variables stored at these nodes to

zero and ordering the code to skip calculating the change in the F -momentum

(i.e. skip evaluating Equations (34) and (35)) when r = R. This will cause

the values of the F -momentum to remain at zero, thus satisfying the boundary

condition.

One must also be able to evaluate Equations (32), (33) and (36)-(41) at

nodes which are not directly on the boundary, but are a distance of Ar/2 in

from the wall at r = R. The evaluation of these equations at these particular

nodes is affected by the wall boundary in the evaluation of the ' -direction

flux term (i.e. the first term on the right hand side in Equations (32)-

(41)).

The problem and its solution are perhaps best described by an example.

Consider attempting to evaluate the P -flux term in Equation (40) (i.e.

5r{m rf(E/ + (PI/2]}) at the scalar node adjacent to the boundary at

r = R as shown in Figure 20. Evaluating the flux term as described by

Equation (30), we can see that we must find the values of E1/D1 and P/o0 at

i + and i - . However, since E1 , 0,, and P1  are all scalar quantities,

their values are not known at these points and must therefore be found by

interpolation as the averaging operators in the flux term indicate. This

creates an apparent problem when one tries to average the values at (i) and

(i+1) to get the value at (i+), since (i+1) lies outside the domain.
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However, one will note that the quantity (E1/P0  + P1/U) is always

multiplied by the momentum in the -r -direction to find the flux, and since

the f -momentum at the wall at r = R is always zero, these variables can have

any finite values at (i+1). Once the average has been taken and the result

multiplied by the iT -momentum at (i+ )(which is, of course, zero), the flux

through the wall in the it -direction will have the correct value of zero.

This is why these nodes are refered to as false exterior nodes. They lie

outside the domain and are initialized to some arbitrary value, at which they

remain throughout the run, They are used purely to fulfill the requirements

of the numerical method and the griding scheme.

(2) r = 0

The symmetry boundary conditions requires that up and u9 must be equal to

zero at r = 0 and that all derivatives with respect to r must be equal to

zero. Again, we can note from Figure 21 shown below that there are only r -

momentum nodes at r = 0. The first boundary condition Is again met by

initializing the values of the gas and particle phase'momenta at these nodes

to zero and instructing the code to skip solving the it -momentum equations

whenever r = 0. Note that this procedure also avoids the singularity that

occurs in the 1/r terms as r.O . Since we have only 'r -momentum nodes at r=O,

and since the code skips solving these equations at that point, the

singularity never arises.

The symmetry condition can be met by using reflection points about the z-

axis at r=O, and continuously updating the values of the variables stored at

these nodes to match the nodes directly across the z-axis. However, referring

to Figure 21, we can see that again the only interaction between the equations

evaluated at nodes which are a distance of Ar/2 from the boundary at r=O and
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the symmetry boundary at r=O is in the P -direction flux term, just as in

paragraph 1. Performing the same analysis which we performed in paragrdph

(1), we again see that the values of the variables at these symmetry nodes can

be completely arbitrary. Once the averaging is performed and the result is

multiplied by the r -momentum (which is, of course, zero), the flux through

the boundary at r=O will have its proper value of zero. It is therefore not

strictly necessary that the values at the reflection points be continuously

updated to enforce the symmetry condition, although it would be perfectly

proper to do so. Note that the only reason that this is possible is because

we are using a staggered grid and our equations have no space derivatives

higher than first order.

(3) z = 0 (solid wall)

Here we again have a solid wall, leading to the boundary condition that

the velocity components wg and wp must be zero. This boundary condition is

imposed in the same manner that the boundary conditions on the radial velocity

components ug and Up were imposed in paragraph (1). Again false exterior

nodes are used to facilitate the numerical scheme at the nodes which are at a

distance of Az/2 from the boundary. Figure 22 shows the details.

(4) z = L (far wall)

The same boundary conditions that applied in (3) apply here

(5) = O1 (wedge symmetry)

Here we again utilize symmetry with the boundary condition being that

tangential velocity components, vg and vp at these nodes are zero. This

condition is enforced in the same manner that the symmetry condition in
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paragraph (2) is enforced. (See Figure 23 for details.)

(6) e = e2 (wedge symmetry)

The same conditions that applied in paragraph (5) apply here.

Open vent (r = R)

Finally, we must consider the boundary conditions at r = R at the

location of the prescribed holes in the outer wall. Since the fluid and

particle momentum at the wall in this case will no longer be zero, the scheme

which was devised in paragraph (1) will not apply. Instead, we will have to

use one-sided interpolations to determine the necessary values at r = R.

As stated before, the gas will be assumed to be leaving the hole at the

choked gas velocity, which is a function of the local pressure and temperature

below the hole. Choked flow means that the gas velocity is equal to the local

sound speed. The speed of sound in the non-ideal gas we are using here, as is

derived in Appendix B, is given by:

Cv (1+2bl g) + R (1+blp) 1

a= [ 9 Cv pg(l+bp 9 ) P9 2  (B.9)
gg

In addition to the speed of sound, it will be necessary to know the value

of several other variables of the fluid at the wall. These may be found via a

Taylor Series expansion about the node nearest the wall. Referring to Figure

24, the general dependant variable W defined at location (i) may be

approximated at (i+ ) as:
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wi w A i (42)

Since we are adjacent to the wall, the derivative -W cannot be

ar

approximated as a centered second-order finite difference. Instead, we can

write this term as a one-sided second order finite difference:

aW 3Wi- 4Wi-+ W i-2

ar ti 2Ar (43)

Therefore, our approximation becomes

7W.- 4W + W
W+ 4 (44)

If the hole is assumed to be larger than one node in the r- or -direction,

it is assumed that the velocity at the node at the center of the hole is

choked, and that the velocities at the remaining hole nodes constitute a

linear profile so that the u velocity is zero at the edge of the hole. (See

Figure 25)

The velocity of the particles leaving the domain through the hole is

evaluated by calculating the drag force on the particles at the hole location:

t F (45)

at 0

2
where FD 0 (27rp)r p

then

(pUp) Fdt (46)
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Integrating both sides, we get:

f t+atd(p2Up ft+AtF dt (47)

t-At t-At

Since we assume in our discretization that all properties remain constant over

the time step at, FDz FD(t) . Then

It+Atd(pU F f t+Atdt (48)

t-At t-At
or

t+At t-At F 2At (49)

(02Up) - (02 "

and finally,

(2U) t+At = FD . 2At + (P2U)t
-At (50)

Once a value for the particle momentum at the hole is known, the rest of

the terms needed for evaluating the numerical scheme can be found via the one-

sided interpolation described above.

5. STABILITY

The numerical solution of partial differential equations by finite

difference methods always presents a problem called stability. A finite

difference scheme, while providing an accurate representation of the original

analytic equation and boundary conditions, may still yield unsatisfactory

results due to oscillations and explosive growth of the output caused by
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instabilities inherent to the differencing scheme being used. Most textbooks

on numerical methods treat this topic in great detail. In this section, we

will look at several sources of instability inherent to the scheme presented

in paragraph 3 and how they can be controlled.

In any explicit differencing scheme, there exists a bound on the maximum

size of the time step. Our conservation equations can be shown to be

hyperbolic partial differential equations. If the size of the time step

exceeds this bound, oscillations will set in and the output will soon becone

unstable. This limiting value can be calculated via the Von Neumann approach

(see, for instance, Richtmeyer and Morton, Reference 16). However, for the

system of ten coupled, nonlinear equations with source terms which form our

finite difference scheme, the evaluation of the Von Neumann stability criteria

would in itself constitute a formidable task. It was therefore decided to

defer calculating the optimum time step and simply run the model with a

suitable constant time step, At , which must be determined by trial and

error. Once the suitability of the scheme has been proven, then a

concentrated effort can be made to determine the formula for the optimum

allowable time step.

A second source of instability is caused by the fact that centered time

differencing, rather than forward time differencing was used to represent the

unsteady terms in Equations (16)-(25). Centered time differencing was chosen

because Kurihara (Reference 14) has shown that it provides less damping of the

kinetic energy than other methods of time differencing. The centered-time

difference scheme can be represented as:

(Wt+1 - Wt-l)/2At = F (r,e,z) t  St  (51)
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where W is some generalized conserved quantity, F(r,o,z) represents the flux

terms and S¢ represents the source terms. Solving for Wt*l, we get

_ 
t+ l  2at [F(r,9,z)t + S t + (52)

Since the first term on the right-hand side is added to the value of W at time

level t-1, there is a possibility that W at time level t+I may be less than

the value of W at time level t, even if 26t [F(r,e,z)t + S 0t is a positive

quantity. Once this occurs, the solution begins to oscillate until eventually

separate solutions form at odd and even time steps.

This oscillation is controlled by adding in a step which averages the

conserved variables over adjacent time steps, as was suggested by Williams

(Reference 15). Thus, one writes

W - (Wt + Wt -)/2 (53)

In this work, the variables were averaged at each adjacent time step to

control this oscillation. It was therefore decided that a time step of 3/2 At

rather than 2At should be used, since this averaging process effectively

reduces the size of the time step. Thus, we assume

Wt+ - (3/2) At.F(r,e,z)t + W* t -I  (54)

To show the effect of this procedure it will be useful to consider one of

the computational results. Figure 26 shows a comparison of the flame front

locus versus time using time steDs of 3/26t and 2At, respectively. This is
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compared with the flame front history from the one-dimensional model described

in Section II. In all cases the walls are impermeable. The three-dimensional

calculation was in this case uniformally initiated to make the comparisons

meaningful. As can be seen, the use of 3/24t as the time step yields results

which are much closer to the results from the previous one-dimensional model,

a result which is fairly accurate.

Another source of instability results from the nature of the equations

being differentiated. Equations (16)-(25) represent a set of nonlinear,

hyperbolic equations. The numerical integration of such equations can become

unstable due to explosive growth of the total energy of the system. This

instability is caused by aliasing, in which waves that are too short to be

resolved by the grid are misinterpreted as waves of longer wavelength. Figure

"7 illustrates this phenomenon.

The solid line in Figure 27 denotes the actual waveform. However, since

this continuous wave has been discretized, the code senses only the amplitude

at each node. It therefore incorrectly interprets the wave as having a

waveform shown by the dashed line. Miyakoda (Reference 17) has shown that

high frequency waves produced by convective terms in the governing equations

can in this manner produce non-physical increases in the total energy of the

system. However, Arakawa (Reference 18) has shown that if the convective

terms in the total derivative form, as they are in Equations (32)-(41),

aliasing will be controlled. The preceeding discussion on aliasing and its

control is condensed from the paper by Williams (Reference 15) and the reader

is referred there for further information on the subject. More on aliasing

can be found in the notes by Wilhelmson (Reference 19).

Another comnon source of instability in the finite differencing of

inviscid hyperbolic equations stems from the formation of shock waves in the
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computational domain. The presence of a shock can cause near infinite

gradients to occur at the front of the Wave. These steep gradients quickly

cause the governing equations to become unstable.

This type of instability is caused by the fact that the second derivative

viscous terms, which are found in the complete Navier-Stokes equations, are

not included in the pseudo-inviscid equations used here. The viscous nature

of the real flow would tend to smear the shock discontinuity over a finite

(albeit small) distance, thus decreasing the severity of the gradient across

the front.

Control of this instability in an inviscid set of equations can be

achieved by adding viscous-like artificial diffusion terms to the right hand

side of Equations (32)-(41) which take the form of second derivatives. The

text by Ames (Reference 20) presents sufficient background. These terms act

to smooth out the sharp discontinuities which occur when a shock forms in the

domain. The artificial viscosity term used in this work is similar to that

used in Hyman's Predictor-Corrector Method described by Sod (Reference 21).

For the explicit scheme used here, it was necessary to lag the evaluation of

the artificial viscosity terms (i.e. evaluate them based on the values of the

variables at the previous time step) to ensure stability (Wilhelmson, class

notes Reference 19). Since no journal articles were found which described the

application of artificial viscosity to three-dimensional problems, one-

dimensional strategies were used in applying these diffusion terms to

Equations (32)-(41). One-dimensional artificial viscosity terms were added to

the equations where numerical experiments showed them to be necessary.

During the development of the computer code, it was found that the

solutions to the momentum equations quickly became unstable unless an

unacceptably small time step was used (typically I0-9 seconds). The root of
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this instability was Found to be in the interaction between the pressure

gradient and drag terms. As the pressure front moves through undisturbed

regions of the bed, the strong gradients across the front induce rapid

increases in the gas velocity. The difference between the gas and particle

velocities would then give rise to strong drag which acts to retard the motion

of the gas. Realistically, the drag should continuously adjust itself as the

relative velocity between the phases changes. However, since we have

discretized this process, the model assumes that the drag remaining constant

over the entire time step. If the drag is large enough, this assumption gives

rise to the situation where the drag not only causes the flow to slow down,

but actually reverses its direction. This is physically impossible, since

once the relative velocity between the phases becomes zero, the drag would be

zero and there would be no force to retard the flow any further and cause it

to become negative.

Once the gas velocity becomes negative, the drag begins acting in the

same direction as the pressure gradient, causing the velocity to again

increase sharply, again becoming positive. This in turn again causes large

dr-ag values which cause the gas velocity to become negative. This oscillation

between positive and negative velocities at adjacent time steps grows until

the scheme becomes completely unstable.

This problem was solved by using a predictor/corrector strategy when

evaluating the momentum equations (Equations (34)-(39)). For each direction

(radial, azimenthal, and axial), the solid and gas phase momentum equations

were solved exactly as shown in Equations (34)-(39), with all of the terms on

the right-hand side being evaluated at the current time level, t. This

predicted a temporary new value for the momenta at the next time level, t+1.

These temporary values were then averaged with the current values of the gas
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and solid phase momentum to give the average momentum over the time step,

At. Next the average phase velocities over the time step were found by

dividing out the appropriate phase density. Finally, the corrector step was

performed by re-evaluating the momentum equation for each phase, again

evaluating the right-hand side at the current time level (just as in the

predictor step) except for the drag, which was evaluated based on the average

phase velocities. The strategy in schematic form is, then:

t+1* t t t-1
(1) (WI)ijk =Fl(r~e~z) jk +4 S 01+ (Wli k (55)

(Wt+l* F (r,g,z t  t + W t-1 (56)

('i,jk 2 i,j,k + i S + )i,j,k

(2 t+1 = F2(r,],z) + S + (W)-. (56)( ijk ,j,k 2 i,j,k

l- til )t 112 (58)
(2) *~i t)~~+1 (W)t I/2 (57)

(W)*i,j,k - (W2)i+j*k + (W' )i,j,kl

(3) (Vt)ijk (W)ijk / (59)

- j-tj t (60)

(V)ij, k  =W)ij,k/ 0

(4) (W F,(r,e,z) k+ S  D[ (vt)*, - 2 ) i~

(4 W )i,j k  1, j, 01- 1 J,k- ( * ,k
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:. (61)

t+ 1 t t
+ S ti+ [(V))

(2iijjk 2  i,j, i,j,k ,j,ki

(62)

Here W, and W2 represent PlUg and p2up, ;1Vg and P2v p , or plWg and P2Wp,

respectively. F, and F2 represent the flux terms on the right-hand sides of

the appropriate gas and solid phase momentum equations, respectively, while

S,, and S represent the gas and solid phase source terms. S'.1 and S'

represent all the gas and particle phase source terms, except for the drag.

Finally, 0) = from the drag relation.

Figure 28 shows the improvement in stability caused by the use of the

predictor/corrector strategy on the gas phase I -momentum equation. The

momentum is plotted for a single node versus number of integrations. Note

that the kink at six integrations is caused by the particles at the adjacent

node igniting and not by instability.
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Typical 3.- Dimensional Volume Cell
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03 Axial Velocity ()Node
V Azimuthal Velocity (V) Node
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Figure 16. Single Three-Dimensional Volume Cell
Utilizing the Staggered Grid
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Figure 19. Determination of the Velocity, u at a
Scalar Nodei:O ~is. i=

Ceraisel exterior node r-Momentum node

i u r aar
68 I ar no e

+

Figure 20. Ealuation of u ea the o undaryu at

Scalar Nod



++

Figure 21. Evaluation of Flux Term at
the Boundary r=O
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Flame Front Locus
2.0- Comparison for 1-D Models
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Figure 26. Comparison of Flame Front Locus
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Figure 27. Aliasing of a Wave Having a Wavelength Which Is
Too Short to Resolve orn the Given Grid
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SECTION V

RESULTS

1.. INTRODUCTION

The numerical scheme described in the previous chapter was incorporated

into a FORTRAN-V computer code. In this chapter some initial calculations are

presented which clearly show that unsteady multi-dimensional flow can be

modeled by this code. While the output presented here is still of a

preliminary nature, it nonetheless shows the suitability and potential of our

model for predicting the rapid transients encountered in this type of work.

As was shown by the one-dimensional model in Section II, a totally

confined bed of small energetic particles exhibits rapid localized increases

in pressure, temperature, velocity, and density (see Figure 4). Pressure can

increase by five orders of magnitude in less than 0.1 milliseconds. One

should therefore expect difficulty in developing a three-dimensional depiction

capable of simulating such severe transients. Since the inclusion of multi-

dimensional effect# and the partial confinement boundary condition greatly

complicates the problem, it was decided to defer the inclusion of the mass

loss through the container walls (the alternate boundary condition) until the

ability of the model to simulate the totally confined multi-dimensional flame

spreading was proven. Paragraph 2 discusses the input for the baseline case

in which a totally confined bed was initiated in such a manner that the flame

spreading would be two-dimensional, while Paragraph 3 presents the results for

this case. Paragraph 4 presents the currently available results for the more

complex partially confined case.
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2. BASELINE CASE DISCUSSION

All the test cases reported in this section modeled granular beds of

explosive with a fixed bed radius of 0.5 cm and lengths ranging from 3 cm to 6

cm. Although these dimensions are obviously smaller than those of actual

explosive-containing warheads, they are sufficiently large for us to study the

developing transients which appear during the early portion of the event.

Also, while the code is capable of modeling three-dimensional flame spreading,

only two-dimensional flame spreading results will be shown here for ease of

data presentation. (Contour plotting only allows three parameters, one

dependent and two independent variables, to be plotted.)

Initiation of the granulated explosives was achieved by assuming, as

before, that a prescribed high-temperature profile exists at one end of the

bed (see Figure 29 ).

The temperature at several prescribed points in the profile was assumed

to be above the bulk ignition temperature of the solid, thus dllowing the

particles to ignite at time t = 0. In this manner the user can control the

initial spatial domain in which the flame spreading will take place. One-

dimensional flame spreading (no variation of the pLrameters in the r -

direction or 4 -direction) can be produced by assuming a profile one shown in

Figure 29, where the gas and particle temperatures vary only in the z-

direction. Two-dimensional flame spreading in the r and z -directions can be

produced by assuming gas and particle initial temperature profiles which decay

to the ambient temperatures in both the r and the -direction. Finally, full

three-dimensional flame spreading can be produced by assuming an initial

profile which varies in all (r-, a-, and z-) directions.
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Input parameters for the two-dimensional baseline (no vent).case are

given in Table 4:

TABLE 4: INPUT PARAMETERS

Bed Length, L 3 cm < z < 6 cm

Bed Radius, R 0.5 cm
Bed Angle, o 50
Particle Radius, rpo 100 m < rpo < 200 um

Porosity, o 0.30

Particle Density, pPo 1.675 g/cm 3

Ambient Gas Temperature, Tgo 300 K

Ambient Particle Temperature, Tpo 300 K

Initial Gas Pressure, Pgo 100 kPa
Particle Ignition Energy, Eign 4.6206 x 109 ergs/g

SFace Increment, Az 1 mm

Space Increment, Ar 1 mm

Angular Increment, A@ 5

Initial Gas Viscosity, Ug, 1.8 x 10-4 dyne-sec/cm2

Prandtl Number, Pr 0.7

Gas Constant, R' 296.79 ergs/K gmole
Specific Heats, Cv & Cv  1.51 x 107 ergs/g K

Particle Chemical Pnergy, Echem 5.74 x 10 O ergs/g

Burning Rate Index, n 1.0

Burning Rate Coefficient, a 0.001

Gas Equation of State Constant, bI  4.0

Number of Nodes 5 x 1 x 60
Number of Variables in Storage 20
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3. RESULTS FOR THE TWO-DIMENSIONAL SIMULATIONS

Figures 30-46 show the pressure, temperature, radial velocity and axial

velocity profiles for the gas at various times. The explosive is 6 cm long,

composed of 200 um sized particles. The grid dimensions were 5 by 1 by 60

nodes, and the bed was initiated in such a manner that the flame spreading was -

two-dimensional (in the '- and ' -direction).

Figures 30-33 show the rapid increase in the gas pressure at the

initiated end of the bed, as well as the forward motion (along the - -axis) of

the pressure front as time increases. (Note that the scale on the pressure

axis changes on each figure.) Particularly interesting is the peak forming at

the head of the pressure wave at t = 46.3 usec. This is indicative of a shock

forming in the granular explosive bed.

Calculations were not possible after about 50 usec (350 integrations) due

to the rapidly developing shock described above. This was caused by the fact

that we are using a constant time step, rather than a time step which adjusts

itself to the rapidly changing bed conditions. As the shock forms, pressure

gradients across the front of the wave become very steep and much smaller time

steps are needed to allow the differencing scheme to adjust to these strong

gradients. The instability was caused, then, not by the finite differencing

scheme, but by the simplification of assuming a constant time step.

Most interesting of all is to observe that as time increases, gradients

in the radial direction vanish entirely and the flow, which was initially two-

dimensional, becomes totally one-dimensional (with gradients occurring only in

the axial direction). This is exactly what the experiments of Bernecker and

Price Reference 9 have shown to occur when totally confined explosives are

initiated in a multi-dimensional manner. Figures 38-43 show this phenomena

more clearly.
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Figures 34-37 show the gas temperature profiles at various times during

the burn. One can clearly see the gradients in the radial direction during

the early stages, as well as the disappearance of these gradients during the

latter stages.

Figures 38-43 show the decay of the radial gradients most dramatically,

since the disappearance of these gradients forces the radial velocity to be

zero. In Fig. 38 we see a very prominent radial velocity profile at t = 13.3

Psec. The radial velocity here is positive, meaning that the direction of the

flow is outward from the boundary at r = 0. Since there is an impermeable

wall at r = R, we know that the gas must eventually reflect off of this wall

and reverse its direction.

In Figure 39 we see that the location of the peak radial velocity has

moved downstream (in the z-direction) and the velocity behind the peak is

negative, as expected, due to the reflection of the flow in that region from

the wall. The reverse flow, though difficult to see in Figure 39 because of

the manner in which the figure is plotted, is more clearly evidenced by the

trough behind the velocity peak shown in Figure 40. In Figure 41 we again see

the reverse flow trough, noting that it has now moved farther downstream.

This means that a portion of the flow which was positive in Figure 40 (at t

34.47 psecs) has reflected off the wall at r = R and is now heading back

toward the center of the bed by the time t = 39.96 4sec. We can also observe

the slight peak at z = I cm where a trough had occurred in the previous

figure. This indicates that the reverse flow from Figure 40 has again

reflected, this time from the boundary at r = 0, and is now again heading in

the positive -direction. One shoul1 also note the overall reduction in the

magnitude of the velocities, indicating that the flow is indeed damping out.
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(Note the change in scale on the radial velocity axis as compared to the

previous figures.) Figures 42 and 43 show this behavior continuing until, at

time t - 46.36 usec, there is practically no radial velocity in the bed.

(Note again that the scale on the radial velocity axis changes in these

figures.)

Figures 44-47 show the developing axial velocity profiles. Again we note

the initially two-dimensional profile decaying to a one-dimensional profile.

In Figure 48 the location of the flame front is plotted in r, z-space at

various times during the event. We can note that initially the flame front

location varies in both the and _ -directions. As time progresses, the

variation of the flame front location as one moves in the -direction becomes

less and less, until at time t = 47.7 psec no variation in the radial

direction is predicted. Clearly, the flame front has become one-dimensional.

These results illustrate two key facts. First, the fact that the

numerical scheme described in Section IV was able to handle the rapid flow

transients indicates its suitability for use in analyzing dynamic two-phase,

multi-dimensional flows. Secondly, the results also show that the model

developed in Section III predicts behavior which is at least in qualitative

agreement with data from experiments involving accelerating reaction fronts in

granular beds of explosive solids.

One may ask at this point if a multi-dimensional flame spreading model is

-*only of limited use, since, in the presence of total confinement, the flame

spreading will eventually asymptote to a one-dimensional process. One must

realize that while the predictions presented in Figures 30-46 show that multi-

dimensional effects last only 50 usec for our example baseline case, such an

amount of time represents a significant percentage of the total duration of
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typical DOT events, which may take only 100-200 usec. Hence, this transient

two-dimensional stage will indeed have a significant effect on a prediction of

the detonation run-up length.

Figures 49-51 show the gas pressure, axial velocity, and flame front

profiles in a bed which was initiated in a purely one-dimensional manner, and

compare them to the results from the same bed initiated in a two-dimensional

manner. In both of these case the initial particle size was fixed at a 100 um

radius. Figure 49 shows the gas pressure profile at t = 19.5 usec for the

case in which the initiation was one-dimensional compared with the two-

dimensional case at r = R/2, again at t = 19.5 psec. One can see the obvious

difference in the two profiles. Figures 50 and 51 provide similar comparisons

of the axial velocity and the flame front locus, respectively. Again, the

profiles are markedly different for the two different types of initiation.

Therefore, we can conclhde that while the multi-dimensional effects eventually

decay they still have a significant effect on the results.

4. PARTIAL CONFINEMENT CASE

Once the capabilities of the code had been shown for the baseline (no

vent) case, calculation was made to test the model's ability to simulate flow

with partial confinement. Again a 3 cm long bed of particles with an initial

radius of 100 um was modeled. A crack 3 mm (3 nodes) in width was assumed to

exist around the entire circumference of the bomb. This latter condition was

imposed to cause the flow inside the domain to effectively remain two-

dimensional. The crack was located a distance of to=1.55 cm from the

initiated end (z=O). A uniform profile was used to assure that the initial

flame spreading one-dimensional, in order to make the multi-dimensional

effects caused by the hole located at a fixed radius to be more apparent.

81



Figure 52 shows ..,e predicted gas pressure profile at t=21.48 usecs. One

can see that behind the hole the profile is indeed one-dimensional. The small

d4ndentation" in the profile at z=1.55 cm indicates the location of the

hole. The flow it this point is still largely one-dimensional because the

pressuire front has only just reached the hole.

Figure 53 shows the gas pressure profile at a time 1.5 wsecs later. By

then the effect of the hole is very apparent. The pressure is severely

diminshed at the crack itself, while downstream of the hole (i.e., in the

positive -direction) one can see strong gradients in the -direction,

indicating that the flow is multi-dimensional. It is especially interesting

to note that downstream of the hole the pressure is higher at the wall than at

the centerline. This is caused by the fact that downstream of the hole, the

radial velocity at r=R (i.e. the solid wall) must again be equal to zero. The

radial velocity components, induced by the gas flowing out of the hole, must

decelerate again to zero at the wall, thus increasing the pressure.

Figure 54 shows P plot of the radial velocity profile shortly after the

pressure wave has reached the hole. One can see that, due to the one-

dimensional initiation, the radial velocity is zero everywhere except at the

hole. In Figure 55, the pressure signals from the hole have propagated down

to r=O and upstream of the hole, inducing radial velocity components in these

regions.

In Figure 56 one can see that the velocity profile is even more

prominent, with a dimple in the profile upstream of the crack. This indicates

that the radial flow induced by the hole has reflected from the solid wall at

r=R and is flowing back toward the centerline.
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For this partially confined case, the calculations were continued until

tne flame front reached the end of the bed at t=23.2 usec, at which point the

calculations were automatically shut off. This is scmewhat significant in

that when the code was run for the identical input conditions, except with

total confinement, the formation of a shock wave prevented further

comput .ions after a time of 19.0 psec. In other words, the existence of the

hole sufficiently weakened the formation of a ' -direction shock so that the

schcme remained stable for the same spatial griding.

The results presented in this section clearly indicate that the model and

code developed in this study has the capabilities needed for calculating

partially confined, unsteady multi-dimensional flows. The potential for

carrying out calculations for (more realistically) larger domains, with

different vent openings and for explosives with different granulation is very

clear.

5. SUMMARY AND RECOMMENDATIONS

Two models were developed to predict the behavior of unsteady two-phase

reactive flows in a partially confined region. A pseudo two-dimensional model

was applied for a wide variety of cases and the results indicated that partial

confinement does have a significant quenching effect on a forming detonation

wave.

Since the pseudo two-dimensional formulation required many major

simplifying assumptions, it was decided that a three-dimensional unsteady

model should be developed to provide a more realistic fluid mechanics

simulation. The conservation equations were derived in cylindrical

coordinates and a new numerical scheme was devised to integrate these
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equations. At the time of this publication, preliminary calculations of this

model indicates that it will provide stable, physically meaningful results

which are consistent with the very limited experimental evidence available.

Time constraints on the publication of this analysis prevents a larger

number of calculations from being performed with this multi-dimensional model.

To conclude, the following proposed improvements are recommended for

future work.

(1) Derivation of an Optimal Time Step:

In order to be able to predict the formation of a steady-state

detonation wave within the fragmented explosive bed, stability of the

numerical differencing model must be maintained in spite of the

presence of a shock wave within the computational domain. To achieve

this, the time step must be sensitive to the instantaneous conditions

inside the bed. A Von Neumann-type stability analysis (Reference 16)

may be necessary to determine the formula for the optimum time step.

(2) Incorporation of Improved Constitutive Relations:

As noted in Appendix A, the applicability of the data required

for the constitutive relations under the wide range of conditions

imposed by this problem is questionable. The incorporation of the

new gas equation of state being developed by Wang and Krier Reference

22 and the Mie-Grunniesen solid phase porosity-pressure relation

should help improve the accuracy of the model.

(3) Devising Alternate Forms of Initiation:

The use of a prescribed temperature to ignite the particles,

while proving satisfactory for initiating the bed, is not always
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realistic. Explosive warheads which are to be modeled are often

initiated by means of a shock from an exploding fuse. Clearly, at

time t=O, not only temperature but higP local pressure should be

modeled.

(4) Application of New Generation Computer Technology:

The CDC CYBER-175 computer currently in use at the University of

Illinois at Urbana-Champaign was employed to run the code shown in

Appendix D. While this is one of the fastest and 1drgest mainframe

ccmputers on the market it is not totally adequate for all the

aspects of this type of work. Though we have been able to

demonstrate the capabilities of the code for predicting multi-

dimensional flame spreading in small domains using the CYBER-175, the

storage and processing requirements for applying this code to larger

domains (with full three-dimensional flame spreading) would

neLessitate the use of an even more powerful computer.

The code requires that the values of ten primary variables be

stored at two time levels, as well as the values of twelve secondary

variables at one time level, at each node. The core memory of the

CYBER-175 allows the user 131,000 words of storage. Leaving enough

memory for the code itself, this restrict the maximum computational

domain to 3500 nodes. Given the size of the space increments needed

to assure proper resolution (approximately 1 x 10- 3m), this limits us

to calculating cases representing relatively small domains. Of

course, infinite storage is available by using off-line memory, but

only at an increased cost to the user.
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This problem may be solved by the utilization of the new

generation super-computers, such as the CRAY-i. The increase in core

memory (1-4 million words for the CRAY-I) offered by such a computer

would allow us to perform calculations for much larger domains.

Furthermore, the increased computational speed of these computers

will help keep the computational costs to a minimum.

S86

. .r'.~:



450-

4i00

300

1 2 3 '1 6' 1
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Figure 30. Gas Pressure Profile at t 13.28 4sec
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Figure 31. Gas Pressure Profile at t =34.47 jisec
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Figure 32. Gas Pressure Profile at t 39.96 psec
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Figure 33. Gas Pressure Profile at t 46.36 ;jsec
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Figure 34. Gas Temperature Profile at t 13.28 ;sec
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Figure 35. Gas Temiperature Profile at t =34.47 usec
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Figure 36. Gas Temperature Profile at t =39.96 visec
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Figure 37. Gas Temperature lt t =46.36 jpsec
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Figure 38. Gas Radial Velocity Profile at t =13.28 p.sec
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Figure 39. Gas Radial Velocity Profile at t 28.06 iisec
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Figure 40. Gas Radial Velocity Profile at t 34.47 usec
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Figure 41. Gas Radial Velocity Profile at t = 39.96 sec
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Figure 42. Gas Radial Velocity Profile at t =42.70 usec
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Figure 43. Gas Radial Velocity Profile at t =46.36 p~sec
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Figure 44. Gas Axial Velocity Profile at t = 13.28 usec
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Figure 45. Gas Axial Velocity Profile at t 34.47 pjsec
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Figure 46. Gas Axial Velocity Profile at t 39.96 isec
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Figure 47. Gas Axial Velocity at t 46.36 psec

105



LoL

0 r

0

(7)0

3:- C
0 a

UC

a CD

C)
S-

C A-

-o

o o

0*0

0 0J

0-0

LO~~ ooC~

106.



2.0 7--
Pressure Profile Comparison

N for 1 and 2-D Initiations.

1-D
L5 -2-D

t =19,5 sec
r =R/2

L-

L0

0 .2O6 . 1.4 L8 2.2
z (CM)

Figure 49. Comparison of Pressure Profiles for One- and
Two-Dimensional Initiations
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Figure 50. Comparison of the Axial Velocity Profiles for
One- and Two-Dimensional Bed Initiations
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Figure 51. Comparison of the Flame Front Locus for One-
and Two-Dimensional Initiations
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Figure 54. Gas Radial Velocity Profile at t =18.51 v.sec
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APPENDIX A

CONSTITUTIVE RELATIONS

To totally describe the process occurring in the combusting explosive

media, we must be able to find the instantaneous values of pg, pp, u9, Up, Tg,

Tp, Pg, Pp and ,. The six conservation equations allow us to solve for six of

these variables. In addition to these equations, three constitutive relations

are needed for closure:

(i) An Equation of State for the Gaseous Products Phase:

In this work we utilized a non-ideal equation of state for hard spheres

suggested by S. J. Jacobs (Reference 1231). This equation of state was

written as:

Pg o R'T (1 + bpg (A-I)

Ideally, the coeficient b, should be a function of the density. However, in

this analysis, bI was considered a constant.

While offering good correlation with experimental values at relatively

low pressures, there is some question about the accuracy of this equation of

state at the extremely high pressures (10-20 GPa) which can be achieved in a

bed of combusting particles. Work is currently being performed by Krier and

Wang (Reference 1221) to develop an equation of state which is valid at these

extreme pressures.

(ii) An Equation of State for the Solid Particle Phase:

,11
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Here, the Tait equation of state was used to predict the density of the

solid particles:

3P p 1/3;: Op- K + 1) P PO (A-2)

(iii) A Relation for Predicting the Porosity, o:

Since no relationship for the porosity of a packed bed of particles which

is reliable under the range of conditions imposed by this problem is known,

this condition was replaced by an equilibrium condition which states that at

each instant of time, the particle pressure is equal to the gas pressure. The

porosity is then predicted for each new time step by taking the value of 02

predicted by Equation (2) and dividing it by the solid phase density from the

previous time step. While this procedure does introduce some error into the

prediction of €, this error will be quite small since the time steps used in

this model are quite small and the density of the solid phase will not change

much between adjacent time steps.

In addition to these equations, relations are needed to solve for the

heat transfer, drag, and burning rate.

(iv) A Relation for the Interphase Heat Transfer Term, Q

The relations used to find the heat transfer between the hot gases and the

particles were:

Q = h (Tg- T) (A-3)
pg g p r

kh - (1 + 0.2 Re 0.7 Pr0 .33) (A-4)
rpg r r

pg

i.-B
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where the gas thermal conductivity is defined as:

kg 9 (R'+ C v9)/Pr (A-5)

and the interphase viscosity is given by:

11= 9 (T 9/T 90) 065 (A-6)

The Reynolds Number used in this work is given by Wallis [241 for two-phase

flow as:

Re r =2 r p 1I(u~ - u 9)I/14g (A-la)

For the three dimensional model described in Section 11, a variation of this

form of the Reynolds Number was used:

Re r =2r pO1I(u p + v P + wp2)-5 (u 92+ v P+ w )I2/l5 AIg

(A-7b)

(v) A Relation for the Gas-Particle Drag, 0:

The relation used for the interphase drag in this work are given as:

0 ii[ u-u )/(4r~ 2)]l. fp (A-8)

pg 2(276 + [T107)(A-9)
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This relation was derived experimentally by Kuo and Nydegger (Reference 125])

for steady flow in a packed bed of spheres at constant porosity for Reynolds

number ranging from 460 to 14,600. The problem being considered here is

unsteady and has Reynold's numbers which greatly exceed this range. However,

at the present time there does not appear to be any relationship in use which

is any more reliable.

(vi) A Relation for the Gas Production Rate, r:

r = - (1 - ) pr (A-10)r
p

where rp is the instantaneous particle radius and is the surface burning

rate given by:

r=a P (A-i)
g

While some of the relations used in this "work were applied under

conditions which lay outside their stated domain, this should not detract

anything from the reliability of the results obtained herein. Rather, the

development of constitutive relations which are tailored to the extreme range

of conditions encountered in this type of work will merely help to fine tune

the previous results.
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APPENDIX B

THE SPEED OF SOUND IN A NON-IDEAL GAS

In Section II we formulated a partial confinement model which assumed

that the gas escaped from each damaged control volume at the choked

velocity. We must then determine the speed of sound in the non-ideal gas

which is produced in the .burning partcles. Recall that our non-ideal

equation of state had the form:

P = PR'T(1 + b10 ) (B-)

Recall also that the First Law gives us:

de = - pdv (B-2)

If we use

de = CvdT (B-3)*

and the Second Law

ds = A9 (B-4)
T

we can re-write (B.2) as

!a

CvdT = Tds - pdv (B-5)
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Combining the above equations yields the result

11"'° dT R' )d(B)

ds C -- (o + b o
VT -(-

Equation (B-6) can be rearranged as

(T P 2

After some mathematical manipulation, we can show that

dT dP (1 + 2blo) do

T P T( "- (1+ b) p

Substituting this into (B.6), we get

C(I+2bo) + R'(l+b P)2

R +bds 0C) 1 dp/p (B-8)
V-P (1F+b1

Recalling that the speed of sound Is given by

2

a ap S

Equation (B-8) gives us that

C (1+2blp) + R'(J+blp)

a = SQRT v Cvo(+b) P (B-9)

*That Equation (B-3) holds true for the non-ideal equation of state used here

can easily be shown by writing the internal energy as
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de= 1~r dT + dv

and applying the First and Second Laws of Thermodynamics and using Maxwell's

relations.
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APPENDIX C

DERIVATION OF THE CONSERVATION EQUATIONS

In Section III, the ten conservation equations for the unsteady, three

dimensional separated flow model were presented in their finished form. In

this appendix, the key steps in deriving these equations will be presented.

Gas Phase Continuity

Consider a three dimensional cylindrical control volume element with

sides of finite length dr, de, and dz. Mass is flowing through the volume in

the , , and directions. Performing a mass balance on this control volume:

Mass increase in C.V. net mass mass generated

in time t flux through + in C.V. in time t

C.V. in time t

a(p V q)
at '(r -(r+dr + - (m)e+de mz- (z+dz + PcVT

(C-1)

Here, Vg = volume of gas phase and VT = total volume of control cell. Using a

Taylor Series to expand the flux terms about r+dr, o+do, and z+dz, we get

2.

a(p V ) = r a r 2+
2 - {iii+ - dr +- dr+ - }at r r ar a 2

ar-" 2.

-- : +me (e +  d +-- de +-

2.

+m- {mz + dz + --- T dz2 +
z z 3z 21;-. az

+ rVT
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or

2.
amr d mr +=.. {-T;dr +--- dr z +- --

at 3r ar

2.

{- do + e- de 2 +

am a m2.
r Z Z

- ti- dz + - z
aZ

+ rVT (C-2)

For a cylindrical control volume Vg =rdrdedz¢. Since the volume of the control

cell is invariant with time, it may be pulled out of the time derivative on

the left hand side. Dividing by Vg, we get

2.

a( amr a m

at rdedz -- a r 2
ar

2.
-- 1 am9  a m2

rdrdz ae H 2
• ae

-- 2 .
- a z  anm zrdrde -K +---'-dz + }+ r (C-3)

az

Now consider the first group of terms (1) on the right-hand side (R.H.S.) of

Equation (C-3):

* 2.

am, 
+ a m dr +

rdedz ar 2

Now:
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fr = pgArLu

A r= rdedzo

Therefore, we get:

2

- rddz r ~rdedzou + -- L2~ (p rdedz~u) dr + ----

gdd gr 9 ar g g

Since do and dz are not functions of r, they may be pulled out of the

derivative. Therefore, we get:

2

11('3 1ru~ + 1--(,u dr +----

By defining

Ae drdz

and

=n PgAZWg

A2 rdrdes

and performing the same analysis on groups (2) and (3), we finally get.

P 2

at r I-r (roiug 2 i (ropu) dr + --
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2

- + (0V) 4 (Qi~g) de + - (2)

r aaZ

+ (C-4)

If we now take lin dr 0 0, all of the higher order terms in group (1) approach

zero. Similarly, if we take lim do - 0 and liM dz . 0, all the higher order

terms in groups (2) and (3) go to zero. Finally then, we are left with:

(rU(PVg) - (P1Wg + r (C-5)
at - r ar ro r ae 9 3 C

Gas Phase Momentum Equations

Since velocity is a vector function, the momentum equations must be

derived in vector form. Consider again a cylindrical control volume.

Performing a momentum balance on this control cell:

Momentum increase net momentum net pressure interphase

in C.V. in time t = flux through + stress on C.V. + drag and

C.V. in time t faces momentum generated

by combusting particles

;( V

( (m r r ) r+dr+ (m e1) a- (m e )e+de

(z )z- (z 7)z+dz+ (P gArd r - (P gA r)r+dr
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+ (PA)- (PA) + (PA)- (PA)
g ae gee +de g zz g zz+dz

-0 V + r ,? VT (C-6)

where

= U g + Vg8 +Wgz

D = r +B +

Again performing a Taylor Series Expansion as before, we get:.

2

Sdr + 2 ) dr} (4)
at- g ar r +rar

S) rde + u)(rde)2+ } (5)
- ~ra ~ 6(rde)'

2

: - {. (,)dz + (i )dz 2+-- } (6)
az z 8z

2

--{_.a (PA) dr + (PA) dr2  (7)ar r 2 r. ar

a __ A
{- (PA) rde + (PA) (rde)+-- 1 (8)r-e.e (rae)

-T ~ (PA)zdz + L (PA)zdz 2+ - - } (9)
az z 3az2

-Dv + r V (C-7)
g g

Let us consider each term separately.
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Term 4:

~r V) 3 4r - [. (u g + vg + w:. ~r armrU W)

a4[rnrUgr+nrVgS+nrwgz} (C-8)__ar r r g r + rVgI+rwgz

Note that -L 38 3z 0 . Therefore,3r ar 3r

(irV) A u F + v a •
r ar g a r g -r r g

Now,

mr = pu rdedz,
r gg

Therefore,

a 2 ~ aOh (mV) - dedz or; (olru ) ~ + dedz - (pluVr)
or r V) oeza r 'gg r

+ dedz - (pu 9w r) z (C-9)

or, V) = dedz - 2r) ' + 4 r

or, or r [r (pu 9 ) + ( 1 Ugvgr)

+ -1 (Po W r (4*) (C-10)

Note: the higher order terms will not be expanded, since they will disappear

as before. Going on to term 5, we proceed in a like manner, recalling,

however, that -2 , 8 -, I-z = 0 Therefore,
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:u r me + mevg + w Z)

p e
rae ~ ri1ug4-i 8 gi~~

=- re(msUg) r + r + r (mevg) g

my

r rae eg

Defining

m9 : °drdzvg

We finally get

(MeV) drdz [( UVg I I, Dg

( [ IVg I+ I, v} +T (Ov w )
(C-12)

Similarly, recalling that

--- =e3z0,az 3z 3z

we expand term 6 to get

z rdrds [-r (OuW) r a z ( Dgg

+ az 9W
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Next we consider term 7 the pressure stress in the 'r -direction:

A = rdedzt Fr

Therefore,

4.
(P A )dr = (rdedzP t) F- drdedz -1 (r)

Tr gr ar a

There is another component of the pressure stress in the F -direction

which is due to the curvilinear nature of our coordinate system. Consider the

r,e projection of our control volume shown in Figure 57. As can be seen from

the drawing, there is a component of the pressure force in the 4 -face which

acts in the ' -direction. The magnitude of this force is:

PgA 0 sin do)= PA drdodzo (C-14)

Since an equal force is acting on the opposite 4 -face, the total force is:

T = -P drdedzof = -P1drdedzF (C-15)

Therefore, term 7 becomes:

r g r r ad (Pr) - PI) F

aP1
= drdedz (P1 + r- - P1)

*13



(PgA)r = rdrdedz [-r (P)I F  (7*) (C-16)

ar g r r ar r 7)(-6

Proceeding to term 8

(P A ) rde = a [P drdzi] rde '
rae g a e rae g

= rdrdedz [ (P9] 6 (C-1)Do

Again there is component of the stress on the ' -face in the 3 direction:

- P de) A + P sin (do) A (C-18)

g r+ dr g r re

g L dedzt (r - (r+dr))

- P drde dzt

r.0e 9

Therefore, term 8 becomes:

r (P A ) rde drdzde (PI ) Plde ]  (8*) (C-19)
rae g 8 e ae ( 2)-~Pd](-9

Similarly, term 9 becomes:

(P A ) dz = rdrdedz-* (PI) (9*) (C-20)

Now, we plug these starred terms back into Equation C.4 and divide out the

volume of the control cell and take the limits as dr, do, and dz 0 0. After

re-arranging the terms, we finally get:
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Gas Phase Direction Momentum

(QiUg ) _ ( Ug2r) - (o - (PUgWg)

-- r ( : r 9 - ae ( (  )i

2
SVg

+ .-- - (Pl) - D + ru (C-21)
r ar r p

Gas Phase -Direction Momentum

t (iVg) I - (UgVgr) I F (Vg) - w
- r = - r r ae az ) -VgWg

- Or l g a (PI) De + rvp (C-22)

Gas Phase -Direction Momentum

T (DIWg) = - r (lUgWgr) - F - ( OVgWg)

a 2 - (P) - D + rw (C-23)
- Wg a z p

Gas Phase Energy Equation

Once again we perform an energy balance on our control volume:

increase in energy

in control volume

over time t

net energy flux through
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control volume + work done

in moving gas through C.V.

heat transfer, drag work,

chemical energy, and kinetic

energy of the combusted particles

((EEV) P P

at mr(Egt+ -2)Ir- tr(Egt+ --2 )1r+dr

+ f (E gT+ S 8 - (E gT 0'e'de

-. g g Pg

PP
+ i (E r+ AI Ih (E +i

--.- ___VTaDr p _TgDB _V q O~p -VT~-- Tz 0W rEt U -azwpVT

2 2 2

+" (r- + - ---) V (C-2)
Chem +2 2 2

Proceeding in an identical manner as before, we finally get:

S(D~IEg = P r(Eg+9 - Pd(E +t'~

a I ~wg (Egt+ -1*)] - Qi - O~U- O v~

2 2 2
2 U V

-Ow + i (Eh P P +j-) (C-25)
z p ce 2 2 2
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